Re: Small Blocks...
in response to
by
posted on
May 13, 2013 06:46PM
I used Google to find this article.
rosehill
http://www.lrb.co.uk/v33/n10/donald-mackenzie/how-to-make-money-in-microseconds
"Human beings can, and still do, send orders from their computers to the matching engines, but this accounts for less than half of all US share trading. The remainder is algorithmic: it results from share-trading computer programs. Some of these programs are used by big institutions such as mutual funds, pension funds and insurance companies, or by brokers acting on their behalf. The drawback of being big is that when you try to buy or sell a large block of shares, the order typically can’t be executed straightaway (if it’s a large order to buy, for example, it will usually exceed the number of sell orders in the matching engine that are close to the current market price), and if traders spot a large order that has been only partly executed they will change their own orders and their price quotes in order to exploit the knowledge. The result is what market participants call ‘slippage’: prices rise as you try to buy, and fall as you try to sell.
In an attempt to get around this problem, big institutions often use ‘execution algorithms’, which take large orders, break them up into smaller slices, and choose the size of those slices and the times at which they send them to the market in such a way as to minimise slippage. For example, ‘volume participation’ algorithms calculate the number of a company’s shares bought and sold in a given period – the previous minute, say – and then send in a slice of the institution’s overall order whose size is proportional to that number, the rationale being that there will be less slippage when markets are busy than when they are quiet. The most common execution algorithm, known as a volume-weighted average price or VWAP algorithm (it’s pronounced ‘veewap’), does its slicing in a slightly different way, using statistical data on the volumes of shares that have traded in the equivalent time periods on previous days. The clock-time periodicities found by Hasbrouck and Saar almost certainly result from the way VWAPs and other execution algorithms chop up time into intervals of fixed length.