Welcome To The Strikepoint Gold HUB On AGORACOM

Focused on the Rice Lake Gold Belt

Free
Message: .....Playing On The GoldenFairWay

looking at our priority 1 to 5 targets, one will notice that these targets are looking for breaks in the magnetics as this could be a potential Trap.One of these features is a 1.5 km long, roughly east-west trending magnetic high that is cut at three places by northeasterly, Type-16 oriented cross-fractures. Magnetic lows associated with these intersections are interesting since the injection of sulphides by gold-bearing fluids often converts magnetite, a magnetic oxide mineral, to pyrite, a non-magnetic sulphide mineral, resulting in patches of low magnetic intensity.
In the southern part of the survey area, another mafic unit is tentatively interpreted as a distal northwestern extension of the subvolcanically injected gabbro that hosts the Rice Lake and adjacent Cartwright deposits. Importantly, this southernmost mafic unit is also cut by the same regional Type-16 structures that are caused by the late stage deformation event that appears to have mineralized the entire central part of the Rice Lake greenstone belt.
...........

Ore genesis

From Wikipedia, the free encyclopedia

Jump to: navigation, search

The various theories of ore genesis explain how the various types of mineral deposits form within the Earth's crust. Ore genesis theories are very dependent on the mineral or commodity.

Ore genesis theories generally involve three components: source, transport or conduit, and trap. This also applies to the petroleum industry, which was first to use this methodology.

  • Source is required because metal must come from somewhere, and be liberated by some process
  • Transport is required first to move the metal bearing fluids or solid minerals into the right position, and refers to the act of physically moving the metal, as well as chemical or physical phenomenon which encourage movement
  • Trapping is required to concentrate the metal via some physical, chemical or geological mechanism into a concentration which forms mineable ore

The biggest deposits are formed when the source is large, the transport mechanism is efficient, and the trap is active and ready at the right time.......Hydrothermal processes

These processes are the physico-chemical phenomena and reactions caused by movement of hydrothermal waters within the crust, often as a consequence of magmatic intrusion or tectonic upheavals. The foundations of hydrothermal processes are the source-transport-trap mechanism.

Sources of hydrothermal solutions include seawater and meteoric water circulating through fractured rock, formational brines (water trapped within sediments at deposition) and metamorphic fluids created by dehydration of hydrous minerals during metamorphism.

Metal sources may include a plethora of rocks. However most metals of economic importance are carried as trace elements within rock-forming minerals, and so may be liberated by hydrothermal processes. This happens because of:

  • incompatibility of the metal with its host mineral, for example zinc in calcite, which favours aqueous fluids in contact with the host mineral during diagenesis.
  • solubility of the host mineral within nascent hydrothermal solutions in the source rocks, for example mineral salts (halite), carbonates (cerussite), phosphates (monazite and thorianite) and sulfates (barite)
  • elevated temperatures causing decomposition reactions of minerals

Transport by hydrothermal solutions usually requires a salt or other soluble species which can form a metal-bearing complex. These metal-bearing complexes facilitate transport of metals within aqueous solutions, generally as hydroxides, but also by processes similar to chelation.

This process is especially well understood in gold metallogeny where various thiosulfate, chloride and other gold-carrying chemical complexes (notably tellurium-chloride/sulfate or antimony-chloride/sulfate). The majority of metal deposits formed by hydrothermal processes include sulfide minerals, indicating sulfur is an important metal-carrying complex.

Sulfide deposition:
Sulfide deposition within the trap zone occurs when metal-carrying sulfate, sulfide or other complexes become chemically unstable due to one or more of the following processes;

  • falling temperature, which renders the complex unstable or metal insoluble
  • loss of pressure, which has the same effect
  • reaction with chemically reactive wall rocks, usually of reduced oxidation state, such as iron bearing rocks, mafic or ultramafic rocks or carbonate rocks
  • degassing of the hydrothermal fluid into a gas and water system, or boiling, which alters the metal carrying capacity of the solution and even destroys metal-carrying chemical complexes

Metal can also become precipitated when temperature and pressure or oxidation state favour different ionic complexes in the water, for instance the change from sulfide to sulfate, oxygen fugacity, exchange of metals between sulfide and chloride complexes, et cetera.

[edit] Metamorphic processes

Lateral secretion:
Ore deposits formed by lateral secretion are formed by metamorphic reactions during shearing, which liberate mineral constituents such as quartz, sulfides, gold, carbonates and oxides from deforming rocks and focus these constituents into zones of reduced pressure or dilation such as faults. This may occur without much hydrothermal fluid flow, and this is typical of podiform chromite deposits.

Metamorphic processes also control many physical processes which form the source of hydrothermal fluids, outlined above....

Share
New Message
Please login to post a reply