Aiming to become the global leader in chip-scale photonic solutions by deploying Optical Interposer technology to enable the seamless integration of electronics and photonics for a broad range of vertical market applications

Free
Message: pic website

The article is titled: Three ways photonics can catalyse hardware evolution for datacoms

As the computing industry faces evergrowing demands for higher speeds, photonic technologies can facilitate the necessary hardware evolution, through hybrid integration, chip disaggregation, and enabling 200G per lane.

BY SURESH VENKATESAN, CHIEF EXECUTIVE OFFICER, POET TECHNOLOGIES

 

key paragraphs:

 

At POET Technologies, our “semiconductorisation of photonics” approach is a form of hybrid integration. That term is meant to underscore the intention behind our designs: to make it as straightforward as possible for the semiconductor industry to move to photonics-first solutions that are material agnostic. Our elegant design eliminates dozens of parts because we rely on passively attached optical components to move data, leveraging the broad semiconductor industry’s investments in advanced packaging technology.

Based on a “silicon for photonics” interposer platform, POET’s products offer manufacturers a critical piece of the puzzle of achieving high integration, especially for 1.6T, 3.2T, and beyond. With its “silicon for photonics” hybrid integration approach, POET is focused on addressing the shortcomings of more conventional silicon photonics solutions. To this end, POET’s technology includes features like passive alignments, low-loss multilayer waveguides, and integrated optical passives like multiplexers and de-multiplexers that have the flexibility and fungibility to address a broad range of market requirements.

Such flexibility and integration are crucial, because serial data communication channels have not been able to keep pace with growing bandwidth. The number of communications lanes increases as data rates increase. Those manufacturers who rely on conventional discrete assembly are challenged to economically deploy products that perform consistently within eight-channel architecture – which is needed for 800G speeds – and are incapable of accommodating 16-channel lanes – which is necessary for 1.6T and 3.2T, the speeds of the future. POET achieves 16-lane capability by using 3D assembly techniques and stacked non-interacting waveguides. It’s a simplified process that drives data communications at unprecedented speeds. 

Share
New Message
Please login to post a reply