No such message found

Aiming to become the global leader in chip-scale photonic solutions by deploying Optical Interposer technology to enable the seamless integration of electronics and photonics for a broad range of vertical market applications

Free
Message: Photonic Wire Bonding

Abstract

Three-dimensional (3D) nano-printing of freeform optical waveguides, also referred to as photonic wire bonding, allows for efficient coupling between photonic chips and can greatly simplify optical system assembly. As a key advantage, the shape and the trajectory of photonic wire bonds can be adapted to the mode-field profiles and the positions of the chips, thereby offering an attractive alternative to conventional optical assembly techniques that rely on technically complex and costly high-precision alignment.  In this paper, we demonstrate optical communication engines that rely on photonic wire bonding for connecting arrays of silicon photonic modulators to InP lasers and single-mode fibres. In a first experiment, we show an eight-channel transmitter offering an aggregate line rate of 448 Gbit/s by low-complexity intensity modulation. A second experiment is dedicated to a four-channel coherent transmitter, operating at a net data rate of 732.7 Gbit/s – a record for coherent silicon photonic transmitters with co-packaged lasers. Using dedicated test chips, we further demonstrate automated mass production of photonic wire bonds with insertion losses of (0.7 ± 0.15) dB, and we show their resilience in environmental-stability tests and at high optical power. These results might form the basis for simplified assembly of advanced photonic multi-chip systems that combine the distinct advantages of different integration platforms.

https://www.researchgate.net/publication/340948929_Hybrid_multi-chip_assembly_of_optical_communication_engines_by_in_situ_3D_nano-lithography/fulltext/5ea6de3645851553fab2f09a/Hybrid-multi-chip-assembly-of-optical-communication-engines-by-in-situ-3D-nano-lithography.pdf?origin=publication_detail

Share
New Message
Please login to post a reply