Aiming to become the global leader in chip-scale photonic solutions by deploying Optical Interposer technology to enable the seamless integration of electronics and photonics for a broad range of vertical market applications

Free
Message: Re: Detector question????? tnx in advance

Abel, (and everyone else that was perplexed by this, lol )(kidding )

To followup: "To answer your question more directly though, think of the detector being able to "see" anything in the 850nm IR range. I think it's less a question of software and more a question of what are the things visible in the 850nm IR range, whether it's a direct laser light or a gas that's visible in the 850nm range with the aid of an emiter."

http://www.rkiinstruments.com/pages/faq/Catalytic_Infrared_Sensors.htm

Infrared gas detection is based upon the ability of some gases to absorb IR radiation. Many hydrocarbons absorb IR at approximately 3.4 micrometers and in this region H2O and CO2 are relatively transparent. As mentioned earlier, there are some hydrocarbons and other flammable gases that have poor or no response on a general purpose IR sensor. In addition to aromatics and acetylene, hydrogen, ammonia and carbon monoxide also cannot be detected using IR technology with general purpose sensors of 3.4 micron specifications.

Advantages
The major advantages of IR gas detectors:

  • Immunity to contamination and poisoning.
  • Consumables (source and detector) tend to outlast catalytic sensors.
  • Can be calibrated less often than a catalytic detector.
  • Ability to operate in the absence of oxygen or in enriched oxygen.
  • Ability to operate in continuous presence of gas.
  • Can perform more reliably in varying flow conditions.
  • Even when flooded with gas, will continue to show high reading and sensor will not be damaged.
  • Able to detect at levels above 100 % LEL.

Disadvantages
The limiting factors in IR technology:

  • The initial higher cost per point. IR detectors typically are more expensive than catalytic detectors at initial purchase.
  • Higher spare parts cost.
  • Gases that do not absorb IR energy (such as hydrogen) are not detectable.
  • High humidity, dusty and/or corrosive field environments can increase IR detector maintenance costs.
  • Temperature range for detector use is limited compared to catalytic detectors.
  • May not perform well where multiple gases are present.

Conclusion

There is clear need for both IR and catalytic detectors in industry. When making a choice, be sure to consider the field environment and the variables in detector design. Life-cycle cost assumptions will not hold true in all environments. The same can be said for detector mean-time-to-repair or failure. Careful analysis of detectors, suppliers and field experience will help you to select the best catalytic

q

Share
New Message
Please login to post a reply