Electric Vehicle Battery Innovation Predictions 2023
posted on
Jan 16, 2023 06:07PM
Achieved final critical milestones, completing a successful silicon pour
Electric Vehicle Battery Innovation Predictions (2023) | AltEnergyMag
In order to alleviate these hurdles to widespread adoption, scientists and companies are conducting more research into chemistry-based technological advancements that will allow EV batteries to charge faster, adapt to longer ranges, and take on increased life cycles. Increasing the range of EV batteries remains as one of the easiest ways to reduce reliance on available charging stations. Faster charging times would also alleviate the charging bottlenecks. One method to achieve this is through the use of silicon-based anodes in lithium-ion batteries used to power EVs. The main components of lithium-ion batteries are current collectors, anodes, cathodes, separators, and electrolytes. Traditionally, anodes have been graphite (a particular form of carbon), but silicon is increasingly being viewed as the next logical evolutionary step in battery anode chemistry. This is due, in part, to the fact that silicon has ten times the charge capacity over traditional graphite anodes and can be found in abundance. It is literally the second most plentiful element on the earth.
It should be noted, however, that despite silicon’s vast increase in charge capacity over graphite, its implementation has been hindered by a lack of mechanical integrity, poor cycling stability, and poor conductivity. For these reasons, it is unlikely that silicon anodes will replace graphite anodes anytime soon. But that doesn’t mean we have to completely rule out silicon as a solution.
Researchers are actively investigating ways to troubleshoot silicon’s limitations and create a viable path forward in the near future. For example, unique structures and active anode formulations that will incorporate nano-sized length scales, appropriate use of carbon sources, and a solid electrolyte-interphase (SEI) layer that can better withstand the typical formation and degradation that occurs with current silicon anode particles can be used. Silicon is already being used as an additive in graphite anodes, but in very low percentages. To truly gain the charge capacity needed to translate into a better range, keep an eye out for developments in silicon.